
1

StenBOT Robot Kit

Stensat Group LLC, Copyright 2018

2

Legal Stuff

● Stensat Group LLC assumes no responsibility and/or liability for the use of
the kit and documentation.

● There is a 90 day warranty for the Quad-Bot kit against component defects.
Damage caused by the user or owner is not covered.

● Warranty does not cover such things as over tightening nuts on
standoffs to the point of breaking off the standoff threads, breaking wires
off the motors, causing shorts to damage components, powering the
motor driver backwards, plugging the power input into an AC outlet,
applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the
user/owner or any other method of destruction.

● If you do cause damage, we can sell you replacement parts or you can get
most replacement parts from online hardware distributors.

● This document can be copied and printed and used by individuals who
bought the kit, classroom use, summer camp use, and anywhere the kit is
used. Stealing and using this document for profit is not allowed.

● If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

3

References

● www.arduino.cc

● esp8266.githun.io/Arduino/versions/2.3.0

http://www.arduino.cc/

 44

Robot Sensing

● This section, you learn about using sensors to control the robots
movements.

● Make sure the power switch is off and the USB cable is disconnected before
wiring up the next circuit.

 55

Photo Cell

● Disconnect the USB cable and make sure the
power switch is off.

● The photo cell is a light sensitive device that
changes its resistance based on light intensity.

● The photocell can be used in a simple voltage
divider circuit with another resistor. The resistor
is 100Kohms.

● The photo resistor will have a resistance ranging
from 1 Mohm in darkness to 100 ohms in bright
light.

● Install the photo cell and 100 K resistor on the
solderless bread board away from the motor
driver. Make sure the photo cell and resistor are
connected.

● Connect the free end of the resistor to V3 at the
analog connector.

● Connect the free end of the photo cell to GND.

● Connect the resistor and photo cell connection to
pin ADC of the analog connector.

 66

Photo Cell Program

● The program to the right will get an ADC
value from analog port A0.

● Create a new program and enter the code.

● To measure the voltage, the function
analogRead(port) is used.

● One analog port is available and it is called
A0. The voltage range on the analog port is
0 to 1 volt.

● Once the ADC value is read, it can be
converted to a voltage value. The code to
the right shows the equation which can be
used for all the analog ports.

● The Serial.println() function that
displays the volts, includes a numeric
argument which specifies the number of
decimal places.

● Save the program to a new file.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0;
 Serial.println(volts,2);
 delay(200);
}

 77

Conditional Programming

● Before the delay() function, add
the if() statement in bold.

● If the equation in the parentheses
is true then the code in the
brackets after the if() statement
will be executed.

● Run the code and see if it works.
If the area is very bright, the
comparison value 0.8 can be
reduced.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0;
 Serial.println(volts,2);
 if(volts > 0.8) {
 Serial.println(“It is dark”);
 }
 delay(200);
}

 88

Conditional Programming

● Now, add an LED to pin 5. Don't
forget to include the 270 ohm
resistor.

● Modify the code to look like the
one at the right.

● This time, the LED is turned on
when it is dark.

● Notice the else statement added
after the bracket. If the equation
is false, then the code in the
brackets after the else statement
is executed.

void setup()
{
 pinMode(16,OUTPUT);
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0;
 Serial.println(volts,2);
 if(volts > 0.8) {
 Serial.println(“It is dark”);
 digitalWrite(16,HIGH);
 } else {
 digitalWrite(16,LOW);
 }
 delay(200);
}

 99

Quiz Time

● Now that you know how the photo cell works and how to control LEDs, write
a program to turn on an LED when the room becomes dark.

● Write a program to detect three levels of light and turn on the appropriate
LED. You can use pin 4 for the second LED.

● If the room is completely dark, no LEDs are lit.

● If the room light is dim, turn on the red LED.

● If the room is bright, turn on the green LED.

● It is up to you to select the thresholds.

 1010

Light Seeking Program

● The photo cell can be used to have the robot chase after a light source.

● Write a program to have the robot look for a bright light source. If one is not
detected, have the robot turn in place. When it detects a light source, have
the robot move forward toward the light source.

● Bend the photo cell to face frontward. Use a flash light and shine it toward
the robot. You may need to adjust the value in the if() statement to make it
work.

 1111

Sensing the Environment

● To detect things in the environment for purpose of collision avoidance, an
ultrasonic range sensor will be added to the robot.

● This sensor sends out a burst of audio signal at 40 KHz and detects the
echo.

● The processor needs to measure the time it takes for the echo to return.

● This sensor has four pins

● Ground

● 5 Volt power input

● Trigger

● Echo

 1212

Ultrasonic Range Sensor Operation

● The ultrasonic range sensor operates in a specific sequence.

● It waits for a trigger signal. The trigger is a 10us pulse. Once the trigger is
detected, the sensor generates a short signal at 40 KHz.

● It then waits for an echo and measures the time from sending the short burst
to receiving the echo.

● The sensor then generates a pulse on the echo with a length proportional to
the delay measured.

Trig

Transducer

Receiver

Echo

10us pulse on Trig pin

40 Khz burst signal

Echo from target Pulse on Echo pin
Delay

distance = pulse width (us) / 58

 1313

Ultrasonic Range Sensor

● Disconnect the USB cable and make
sure the power switch is off and remove
the light sensor circuit and install the
ultrasonic range sensor in the same area
as shown to the right.

● Connect the VCC pin from the sensor to
the 5V pin on digital pin 16.

● Connect the GND pin from the sensor to
the GND pin on digital pin 16.

● Connect the TRIG pin from the sensor to
digital pin 12.

● Connect a 1K resistor (brown-black-red)
from the ECHO pin to a spot on the
bread board. Then connect the other end
of the resistor to digital pin 0.

 1414

Ultrasonic Sensor

● The ultrasonic sensor has two
signals, trigger and echo.

● A pulse is sent to the trigger and
then the processor is to time when
the echo returns.

● This requires two digital pins, one
configured as an output and the
other as an input. A new command
that will be used is called
pulseIn(). This measures the
time it takes a pulse to occur in
microseconds. Try the program to
the right.

● The results are in centimeters.

● Create a new program and enter
the code to the right. Save the
program and upload it.

void setup()
{

Serial.begin(115200);
pinMode(0,INPUT);
pinMode(12,OUTPUT);

}

void loop()
{

unsigned long range;
unsigned long distance;
digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
range = pulseIn(0,HIGH);
distance = range/58;
Serial.println(distance);
delay(500);

}

 1515

Creating a Separate Function File

● Click on the down arrow to the right
where circled in red.

● A menu will open. Select “New
Tab”

● Below, it will ask for a name.
Enter 'motion'

● Click 'OK'

● A new tab is created called
'ultrasound'

 1616

Ultrasonic Sensor

● The ultrasonic sensor has two
signals, trigger and echo.

● A pulse is sent to the trigger and
then the processor is to time when
the echo returns.

● This requires two digital pins, one
configured as an output and the
other as an input. A new command
that will be used is called
pulseIn(). This measures the
time it takes a pulse to occur in
microseconds. Try the program to
the right.

● The results are in centimeters.

● Create a new program and enter
the code to the right. Save the
program and upload it.

void setup()
{

Serial.begin(115200);
pinMode(0,INPUT);
pinMode(12,OUTPUT);

}

void loop()
{

unsigned long distance;
digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
distance = pulseIn(0,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

 1717

Creating a Separate Function File

● Select Save As... under the File
menu.

● Give the program the name
ultrasound_f.

● Next, delete the function setup(). It
is highlighted in red.

void setup()
{

Serial.begin(115200);
pinMode(0,INPUT);
pinMode(12,OUTPUT);

}

void loop()
{

unsigned long distance;
digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
distance = pulseIn(0,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

 1818

Creating a Separate Function File

● Now, change void loop() to
unsigned long ultrasound().

● Next, delete the last two lines in the
function highlighted in red.

unsigned long ultrasound()
{

unsigned long distance;
digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
distance = pulseIn(0,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

 1919

Creating a Separate Function File

● Insert the return command at the
end of the function.

● Select Save from the File menu.

● You now created a function that can
be added to any future program.

unsigned long ultrasound()
{

unsigned long distance;
digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
distance = pulseIn(0,HIGH);
distance = distance/58;
return(distance);

}

 2020

Creating a Separate Function File

● Click on the first tab.

● Enter the program to the right.

● Save the program with the name
ranging. You will notice the first
tab is now named ranging.

● Under the Sketch menu, select
Add File...

● Select the ultrasound_f program.
You have to go into the
ultrasound_f folder to select the
file.

● A new tab will appear with the
ultrasound function.

● Compile the progam and upload it.

void setup()
{

Serial.begin(115200);
pinMode(0,INPUT);
pinMode(12,OUTPUT);

}

void loop()
{

unsigned long distance;
distance = ultrasound();
Serial.println(distance/58);
delay(500);

}

 2121

Conditional Programming

● Now it is time to use the ultrasonic sensor
to do collision avoidance.

● The 'if' command will be used to test if the
robot will collide with an object.

● The format for the if statement is shown to
the right.

● Multiple statements can be inserted
between the brackets and will be
executed if the condition is true.

● To test for equals, use '=='

● else allows two sets of codes to be
executed depending on the condition.

if(a < c) {
execute code here

}

if(a == c) {
execute this code

}

if(a > c) {
execute this code

} else {
otherwise execute this code

}

 2222

Collision Avoidance Program

● The program on the next page will use the code used to control the
motors, the ultrasonic function, and the conditional command.

● Put together, the program will keep the robot from bumping into anything.

● Enter the code on the next page. The code should be written in a single
file. The code is split on the next page since it wouldn't fit in a single
column.

● You will notice a delay() at the end of the loop() function. This is
needed because the ultrasonic range sensor cannot be operated too fast.
Incorrect results will occur if the loop runs too fast.

● Test it and see if you need to tweak the timing for going reverse and
turning.

● Don't forget to include the motion file by adding the file.

● Save the program and then upload it.

● Change the code to turn a different direction.

 2323

Collision Avoidance Program

long ultrasonic()
{

digitalWrite(12,LOW);
delayMicroseconds(2);
digitalWrite(12,HIGH);
delayMicroseconds(10);
digitalWrite(12,LOW);
long distance = pulseIn(0,HIGH);

 if(distance == 0)
return(1000);

distance = distance/58;
return(distance);

}

void setup()
{

pinMode(0,INPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);
pinMode(14,OUTPUT);
pinMode(13,OUTPUT);
pinMode(12,OUTPUT);

}

void loop()
{
long distance;

forward();
distance = ultrasonic();
if(distance < 10) {

reverse();
delay(1000);
left();
delay(700);
halt();

}
delay(50);

}

 2424

Obstacle Course Time

● Now for the fun part. Modify and expand the program to go through the
obstacle course shown below. The large square represent 2 foot grids. The
red rectangles represent a barrier that can be detected with the ultrasonic
range sensor. Set up some barriers out of any solid material. Card board
boxes, poster paper, or other large materials will work.

● Use the ultrasonic range sensor to avoid crashing into the barriers and turns
the right direction every time a barrier is detected.

● Hint, use the collision avoidance program and expand it so that it will
complete the maze. This requires the robot to back up and turn in specific
directions at specific points of the maze.

S
ta

rt

Finish

