
1

StenBOT Robot Kit

Stensat Group LLC, Copyright 2018

2

Legal Stuff

● Stensat Group LLC assumes no responsibility and/or liability for the use of
the kit and documentation.

● There is a 90 day warranty for the Quad-Bot kit against component defects.
Damage caused by the user or owner is not covered.

● Warranty does not cover such things as over tightening nuts on
standoffs to the point of breaking off the standoff threads, breaking wires
off the motors, causing shorts to damage components, powering the
motor driver backwards, plugging the power input into an AC outlet,
applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the
user/owner or any other method of destruction.

● If you do cause damage, we can sell you replacement parts or you can get
most replacement parts from online hardware distributors.

● This document can be copied and printed and used by individuals who
bought the kit, classroom use, summer camp use, and anywhere the kit is
used. Stealing and using this document for profit is not allowed.

● If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

3

References

● www.arduino.cc

● http://esp8266.github.io/Arduino/versions/2.1.0/doc/reference.html

http://www.arduino.cc/
http://esp8266.github.io/Arduino/versions/2.1.0/doc/reference.html

 44

Introduction

● The wifi integrated in the processor provides a way to communicate with the
robot kit. You can connect using a laptop.

● The robot will be configured as an access point. This means it becomes a
local network where your laptop connects. It is also possible to have a tablet
connect to the robot.

● In this lesson, you will learn how to control the robot and have the robot
send data back. This will require you to write code on the laptop.

 55

System Architecture

● This drawing shows how everything
is interconnected.

● The control program runs on the
laptop.

● The laptop wifi connects to the robot
wifi.

● The control program sends
commands over the wifi to the robot.

● The arduino program on the robot
interprets the commands and
executes them.

● The arduino program on the robot
also sends telemetry over the wifi to
the control program on the laptop.

Control
Program

Arduino
robot

Program

wireless link

 66

What is Wifi

● WiFi is a local area wireless computer network. It is also known as wireless
local area network.

● WiFI is a standard for allowing computers to interact with each other using
radio signals.

● A wireless access point is a device that connects a wireless network to a
wired network. It can also provide a local isolated network not connected to
the internet or other wired network. Access points usually have a network
router and can provide network addresses or IP addresses to any device
that connects.

 77

Wifi Terms

● SSID – is a unique identifier for the WiFi network. It can have up to 32 characters and
is case sensitive. This allows multiple WiFi access points in the same area without
interfering with each other.

● IP Address – is the internet protocol address assigned to each device on the
network. There are two standards, IP-4 and IP-6. IP-4 is used here. The address
consists of four sets of numbers separated by a decimal point. Each number has a
range of 0 to 255. Example 192.168.1.10.

● DHCP – is Dynamic Host Configuration Protocol. This protocol allows a WiFi router to
assign an IP address to any device that connects to the WiFi network. This is done
automatically.

● TCP – is Transmission Control Protocol. This is one of the main network protocols
used by any device on any WiFi network or the internet. The protocol enables two
devices to establish a connection to each other and exchange data. The protocol
guarantees delivery of data and that the data is delivered in the same order sent.

● UDP – is User Datagram Protocol. This does not require two devices to connect to
each other or verify delivery of data has been made. The sending device sends the
packet to the receiving device and if it makes it, the data is received. It is possible for
data to be lost.

 88

TCP vs UDP

● TCP guarantees that data is delivered or if not, will provide an error
indicating data was not delivered. TCP requires one device to establish a
connection to another. When one device sends a packet to the other, the
receiving device will respond to the sender that it has been received properly
or not. If the receiver is not responsive, the sender will eventually quit trying
and generate an error. TCP is a little slower in that time is spent with the
sender waiting for the receiver to respond. TCP is used when data cannot be
lost such as file transfers.

● UDP is faster in that there is no connection made between two devices. The
receiver just listens for packets and takes them when received. The sender
can send many packets quickly because there is no time waiting for the
receiver to respond. The problem is that packets can get lost, either a bad
connection or the receiver was not ready to receive a new packet. UDP can
work for certain types of data such as video streams where an occasional
loss is not catastrophic

 99

WIFI Operation

● There are two parts to the WIFI operation

● Configuration which sets up the module to operate properly

● Data operation where the module receives data and can send data

● The WIFI module will be configured to operate as an access point. This
allows another computer to connect to the module and communicate with
the module.

● More than one WIFI access point can be in the same area and operate
independent of each other as long as their SSID are different.

● In this lesson, the WIFI module will be configured as an access point and
allow TCP connections.

 1010

Wifi Configuration

● First thing to do is include the
ESP8266WiFi library by adding the
three include statements to the top
of the program.

● A WiFiClient object needs to be
created. This allows the code to get
commands from the laptop and
send telemetry.

● WiFiServer object needs to be
created so the laptop can connect
and and send data to the robot. This
allows the robot to receive
connections.

● When creating the WiFiServer
object, the network port is selected.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

 1111

Wifi Configuration

● A character array is created for
holding the commands sent by the
laptop.

● For now, the first character in the
array will be the command.

#include <ESP8266WiFi.h>
#include <WiFiServer.h>
#include <WiFiClient.h>

WiFiClient client;
WiFiServer server(80);

unsigned char cmd[6];

 1212

Wifi Configuration

● WiFi.mode(WIFI_AP) configures the WiFi
to operate as an access point allowing
laptops and other clients to connect to it.
When in this mode, any client that
connects will be given an IP address. Up
to 4 clients can connect.

● Last operation is to set up the WiFi as an
access point. WiFi.softAP() will set up the
robot as an access point with the SSID
specified. If a password is desired then
the format is:

● WiFi.softAP(“ssid”,”password”);

● After the access point is configured, the
server is started. This implements the
ability for clients to connect to the robot.

void setup()
{
 Serial.begin(9600);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
 pinMode(15,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“robotname”);
 delay(1000);
 server.begin();
}

 1313

Wifi Configuration

● Add the loop() function to the program if it
isn't already included.

● Upload the program and let it run.

● On your computer, look up the available
wireless networks and see if the one you
named appears on the list. It may take a
little while since the laptop OS checks for
available networks at some interval of
seconds.

● If it appears, try connecting. If you include
a password, you should be prompted to
enter a password.

void setup()
{
 Serial.begin(9600);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
 pinMode(15,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.softAP(“robotname”);
 server.begin();
}

void loop()
{
}

 1414

Programming the robot

● A unique byte value is required to
differentiate the motions.

● The table to the right shows the commands
for the motions. A single letter will represent
each motion.

Action Command

Halt S

Forward F

Reverse B

Left L

Right R

 1515

Receiving Commands

● In the loop() function, two things
need to be checked.

● Has a client connected to the
robot?

● Has a command been
received?

● One big rule about writing code.
No infinite loops in the loop()
function.

 1616

loop() Function

● In the loop() function, the first
thing that is checked is if a client
is connected to the robot.

● The object client is assigned to a
client that has connected. If no
client has connected then the
client object is empty or null.

● The if() statement checks if the
client object is null or not. The
result of the if() statement is
always true if the variable is not
empty or null.

● If a client has connected. the
statement Connected will be
displayed on the serial monitor.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 }
}

 1717

loop() Function

● A while() loop is created to
process all commands while the
client is connected. As long as
the result of client.connected()
is true, the code inside the
while() loop will be executed.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 }
 }
}

 1818

loop() Function

● The next highlighted line is
where the code is looking for any
commands sent to the robot. It
works the same as
Serial.available().

● The while() loop here executes
as long as there is no
commands being sent. It does
two things. First, it checks to
make sure a client is still
connected otherwise the while()
loop will get stuck forever.
Second, a delay() function is
executed. This allows the
processor to multi-task and
handle WiFi operations.

● If the client disconnects, the
break causes the code to exit
the the while() loop.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 }
 }
}

 1919

loop() Function

● After a command has been
received, the code exits the
while loop and then the
command byte is read.

● Reading a byte from the client is
the same as reading a byte from
the serial interface.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 char a = client.read();
 }
 }
}

 2020

loop() Function

● The command is then checked
in the switch() function

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 char a = client.read();
 switch(a) {
 case 'F' : forward();

break;
case 'B' : reverse();

break;
case 'L' : left();

break;
case 'R' : right();

break;
case 'S' : halt();

break;
 }
 }
}

 2121

Remote Control Software

● With the robot software completed, it is time to write a program on the laptop
to provide the control.

● Processing software will be used.

 2222

Software Development

● The development software to be
used is called Processing.

● Processing Is a programming
language and development
environment using Java.

● Processing makes developing
software easier.

● More information can be found at
processing.org. The software is
free to download and use.

● The development environment is
similar to the Arduino development
environment.

 2323

Software Development Sequence

● The program to be written will allow the
robot to be controlled with the arrow
keys on the keyboard.

● The program must detect when an arrow
key is pressed and when it is released.

● When the key is pressed, a command
will be sent to the robot. When the key is
released, the stop command will be sent.

Key pressed?

Determine
Which Key

Pressed
Send

Forward
Command

Send
Reverse

Command Send
Left

Command

Send
Right

Command

UP

DOWN

LE
F

T

R
IG

H
T

Key
Released?

Send
Stop

Command

 2424

Importing Libraries

● Start the Processing software.

● Click on the Sketch menu and select
the Import Library

● Select the network library.

● The import command will appear at
the top of the editor. This tells the
compiler to include the library of
functions to support network
operations. This library will be used to
access the robot over wifi.

import processing.network.*;

 2525

Setting up a TCP Port

● The next step is to create a network
object that will provide access to the
wifi.

import processing.network.*;

Client c;

 2626

Setting up a TCP Port

● In the setup() function, the network
object is configured to talk to the
robot at the IP address of
192.168.4.1 using port 80.

● A window of 800 by 600 pixels is also
created.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

 2727

Detecting the Keys

● To detect the keys, two event
functions will be used.

● keyPressed() and
keyReleased()

● keyPressed() is executed
when a key on the keyboard is
pressed.

● keyCode is a system defined
variable that tells you what key
was pressed.

● The arrow keys have names
in upper case to make it
easier to use.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

 2828

Detecting the Keys

● Notice that the network object
c has a function called write().
This sends what is in quotes to
the robot over wifi.

● For this to work, Processing
requires the function draw() to
exist even if there is no code
in the function.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

void draw()
{
}

 2929

Detecting Key Release

● The code can now send
commands to control the
motion of the robot. What is
missing is a way to stop the
motion of the robot.

● The keyRelease() function
is executed when a key is
released.

● The only thing the function
needs to do is send the stop
command to the robot. A
single c.write() function is
used. The first argument has
the S command. Remember
the robot commands are
terminated with a linefeed.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

void keyReleased()
{
 c.write(“S”);
}

void draw()
{
}

 3030

Test Drive

● Now that the program is completed, it is time to test it.

● Turn on the robot with the wifi module connected.

● on the laptop, select the network icon to find available wifi access points.

● Connect the laptop to the robot wifi network.

● Start the program in Processing.

● Press the arrow keys and watch the robot move around.

● When the program starts, a window will open. This is the program running. If
needed, click on the window to make it active.

● If at first the laptop doesn't connect properly to the robot WiFi access point,
cycle power to the robot and wait 30 seconds for the WiFi to start up and try
connecting again. Some times the WiFi module does not quite work the first
time it is programmed.

 3131

UDP Rover Control

● Both programs will be modified to handle UDP.

● In Processing, go to the Sketch menu and select Add Library...

● A window will open up. Scroll down toward the bottom. Locate the library
called UDP and select it. At the bottom, select Install. The library will install.

● Once installation in complete, close the window.

● An internet connection is required to install the library.

 3232

UDP Code

● In the processing code,
delete the import statement.

● Under the Sketch menu,
select the library UDP and
replace the existing import
statement.

● Next, change Client to UDP.

import hypermedia.net.*;

UDP c;

void setup()
{
 size(800,600);
 c = new UDP(this,6000);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

void keyReleased()
{
 c.write(“S”);
}

void draw()
{
}

 3333

UDP Code

● A string is created and set
to the rover IP address.

● Change all the write() to
send() as shown in bold.

● Since UDP does not make
connections, the send
function requires the
destination address and
port number all the time.

import hypermedia.net.*;

UDP c;
String ip = “192.168.4.1”;
void setup()
{
 size(800,600);
 c = new UDP(this,6000);
}

void keyPressed()
{
 if(keyCode == UP) c.send(“F”,ip,80);
 else if(keyCode == LEFT) c.send(“L”,ip,80);
 else if(keyCode == RIGHT) c.send(“R”,ip,80);
 else if(keyCode == DOWN) c.send(“B”,ip,80);
}

void keyReleased()
{
 c.send(“S”,ip,80);
}

void draw()
{
}

 3434

Rover Code Change

● The rover WiFi code needs to
be modified to support UDP.

● Delete the everything above the
setup() function. Enter the
highlighted text above setup().

● In the setup() function, remove
server.begin() and replace it
with upd.begin().

● This sets up the processor to
listen for packets received on
the socket port specified by
localudpport variable.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

WiFiUDP udp;
unsigned int localudpport = 80;
char packet[255];

void setup()
{
 Serial.begin(9600);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
 pinMode(15,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“robotname”);
 udp.begin(localudpport);
}

 3535

Rover Code Change

● In the loop() function, all the
code to check for connection
and available bytes gets
deleted.

● The new first line checks if a
packet has been received. It
returns the number of bytes
received or zero for no packets
received.

● Next, the packet is read into the
packet array. Up to 255 bytes
will be read in. Only one byte is
expected.

● If the read was successful, the
first element of the packet is
then used to determine which
command was sent.

loop() {
 int packetsize = upd.parsePacket();
 if(packetsize) {
 int len = udp.read(packet,255);
 if(len > 0) {
 switch(packet[0]) {
 case 'F' : forward();

break;
case 'B' : reverse();

break;
case 'L' : left();

break;
case 'R' : right();

break;
case 'S' : halt();

break;
 }
 }
 }
}

 3636

UDP

● Upload the Arduino code into the SLATE.

● Run the Processing program and test it out.

