Sten-SLATE ESP

Proximity and Gesture Sensor and
12C Bus

Stensat Group LLC, copyright 2016

12C Bus

« |2C stands for Inter-Integrated Circuit. It is a serial type interface requiring
only two signals, a clock signal and a data signal.

« The I12C bus is typically used to interface with sensors and peripheral
devices not needing to communicate at high speeds. The standard data rate
IS 100 Kilobits per second.

« Multiple devices can be connected to a single 12C bus. The processor is the
controller and all the connected devices are peripherals. The processor is
also called the master and the peripherals are slaves. Each slave has a

unique address.

SDA
SCL

Processor

Peripheral | |Peripheral | Peripheral
1 2 3

12C Bus

 The clock signal is labeled SCL. This signal is used to control the flow of the
data bits.

 The data signal is called SDA. This carries the data serially.
 The diagram below shows how a data transfer occurs.

 The data transfer protocol is for the master to first send out a device
address. This is a 7 bit number followed by a bit indicating if the next byte is
to be written to a slave or read from a slave.

« The SCL signal toggles for each bit sent.

7 address bits 8 data bits

SDA ¢ | ':]jAGXA5XA4XA3XA2XA1XAO'XR}VQXA'CFE/ \ ./_'[57'XD6XD5XD4XD3XD2XD1X‘D-Q-\(—é-ck./ \ / :
. T Ly A - = = 7 ,4- -r s | o Y | RO N | SRR - R ik -'.'f i :

Start condition: '1" - Master is requesting data, ! v ACK/NACK: A'1"in this position T Stop condition:

SDA goes low before SCL '0" - Master is sending data * indicates that the addressed slave - ° SDA goes high after SCL
did not respond or was unable to
process the request.

3

12C Sequence

* Every device on the 12C bus has a unique 7-bit address. The gesture sensor
address is 0x39.

 The I12C operation for writing to a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low (ST)
2. Send the device address
3. Send the register address

4. Send the stop sequence by changing SDA from low to high while SCL is high first.
(SP)

« All Bytes sent are acknowledge by the slave.

Master ST |Device Address| W Register Address Data SP

Slave AK AK AK

12C Sequence

 The I12C operation for reading a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low
(ST)

2. Send the device address

3. Send the register address

4. Send a repeat start sequence with a read indication (SR)
5. Read in 6 bytes

6. Send a stop sequence (SP)

Device Register Device
Master |sT Address W Address S Address R A SIF

Slave AK AK AK Data

Gesture Sensor

« The APDS-9960 sensor can measure light level and the color levels in light.
It can measure proximity of something in front of the sensor and it can also
detect a set of hand gestures.

 Three programs will be shown. The programs are based on code from the
Sparkfun library.

Gesture Sensor

 The sensor includes one IR LED,
four IR photodiodes for detecting
gestures and four photodiodes for
detecting ambient light level, red,
green and blue.

”_| 1 a2 ||
I—
; g J
u}—ﬂ—“‘f g —
Il}_.‘%{l g 'll__@'
—1
>

e For proximity sensing, the IR LED |
IS pulsed and the IR photodiodes
detect the reflected light. The =1
phasing of the pulsed light is used -
to determine distance. Range is
not long, maybe 8 to 12 inches.

74
; & g
] H—‘,zz
g
H [
1
]—y ‘J,

» [For color detection, the four
photodiodes with the clear, red,
green and blue filters are used.
Intensity of each is measured and
made available.

Gesture Sensor

* For gesture sensing, the four IR
photodiodes are are arranged in a
diamond shape. They are used to
detect changes in reflected IR light
as a hand or object moves over
head from one side to another.
How the light changes and the
timing the light changes is used to
determine the gesture.

LEDA —

LEDK

]

LDR

GND

.”_l

Gesture
Engine

Engine

PWM

©

12C Interface

FIFO

32x 4Byte | |

Threshold

Control

s

SDA

Light Sensors

Connections

 The sensor needs to be connected to the 12C N
. . Q00! -12 -
bus. The connections are shown in the T =
picture. s a0 o,
e H e o (n
* VIN or VCC is connected to 3.3V. Sew Bosh wa
RS illa]
« SCL is connected to D5 | aw = snli—l
« SDAIs connected to D4 an DA TR e]
o Seepeanas

e GND is connected to GND.

 INT is connected to D12. This is an interrupt ‘ |
signal that will be used in the gesture |
detection program.

* There are two versions of this sensor.

different. Check the labeling on the
sensotr.

e The sensor can be inserted into the
solderless bread board and connected with
male/female jumpers. 9

Install Library

Before writing the program, the library supporting the gesture sensor needs
to be installed.

In the Arduino IDE, select Sketch menu and Include Library
Select Manage Libraries at the top.

Enter into the search at the top right, APDS9960.

Select the Sparkfun APDS9960 RGB and Gesture Sensor library.
Click Install.

Once installed, close the Library Manager.

10

Proximity Sensor

#include <Wire.h>

« The sensor includes an IR #include <SparkFun APDS9960.h>

emitter and detectors. The SparkFun APDS9960 apds = SparkFun APDS9960();
proximity sensor flashes the |uint8_t proximity data = 0;

I_R Iig_ht and measures the void setup() {

time it takes for the light Wire.begin(4,5);

Serial.begin(115200);
if (!apds.init())
Serial.println("Something went wrong");

reflection to return.

* The Sparkfun “brary takes apds.setProximityGain(PGAIN 1X);
care of all the details. }
if (!apds.enableProximitySensor(false))
° ThIS COde iS from the Serial.println("Something went wrong);
. : }
examples and is stripped
down to the bare minimum. void loop() {
apds.readProximity(proximity data)) {
Serial.print("Proximity: ");

Serial.println(proximity data);
delay(250);

}

11

Proximity Sensor

The Sparkfun library is included
at the top of the program. An
Instance of the library device is
created and named apds.

In the setup() function, the 12C
bus is configured along with the
serial interface. The sensor is
Initialized with apds.init(). If it
returns a 0, the if function will
iIndicate something went wrong.

The gain is set in
apds.setProximityGain().

Last, the sensor is set to
proximity mode with
apds.enableProximitySensor.

#include <Wire.h>
#include <SparkFun APDS9960.h>

SparkFun APDS9960 apds = SparkFun APDS9960();

uint8 t proximity data 0;
void setup() {
Wire.begin(4,5);
Serial.begin(115200);
if (!apds.init())
Serial.println("Something went wrong");
apds.setProximityGain (PGAIN 1X);
}
if (!apds.enableProximitySensor(false))
Serial.println("Something went wrong);

}

void loop() {
apds.readProximity(proximity data)) {
Serial.print("Proximity: ");
Serial.println(proximity data);
delay(250);

}

12

Proximity Sensor

In the loop() function, the
proximity value is captured in
the variable proximity data.

The function
apds.readProximity() captures
the measurement.

Run the program and determine
the measurement range.

Change the gain and see if
anything changes. PGAIN_1X
can be changed to

- PGAIN_2X
- PGAIN_4X
- PGAIN_8X

#include <Wire.h>
#include <SparkFun APDS9960.h>

SparkFun APDS9960 apds = SparkFun APDS9960();

uint8 t proximity data 0;
void setup() {
Wire.begin(4,5);
Serial.begin(115200);
if (!apds.init())
Serial.println("Something went wrong");
apds.setProximityGain(PGAIN 1X);
}
if (!apds.enableProximitySensor(false))
Serial.println("Something went wrong);

}

void loop() {
apds.readProximity(proximity data)) {
Serial.print("Proximity: ");
Serial.println(proximity data);
delay(250);

}

13

Color Sensing

This example shows how to
use the sensor to detect
colors.

Four variables are declared to
hold the colors and intensity.

In the setup() function, the
sensor is initialized as before.

The sensor is set to light
sensor mode with
apds.enableLightSensor().

A delay of a half second is
inserted to allow the sensor to
self calibrate.

#include <Wire.h>

#include <SparkFun APDS9960.h>

SparkFun APDS9960 apds
uintlé t ambient light
uintlé t red light = 0;
uintlé t green light =

= SparkFun APDS9960();

0;

0

uintlé _t blue light = 0;

void setup() {
Wire.begin(4,5);
Serial.begin(115200);
if (lapds.init())

Serial.println("Something went wrong");
if (!apds.enablelLightSensor(false))

Serial.println("Something went wrong");
// Wait for calibration to finish

delay(500);

14

Color Sensing

In the loop function, the
light intensity and four
colors are captured
separately. The big if()
statement is used to detect
any errors in reading any
of the measurements. The
symbol || means OR.

If all data is collected, the
results are displayed on
the serial monitor.

Light is sampled once a
second.

void loop() {
!apds
!apds
lapds
!apds
Serial.

if

}

}

delay(1000);

}

else {

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

.readAmbientLight (ambient light) ||
.readRedLight (red light) ||
.readGreenLight (green light) ||
.readBlueLight (blue light)) {
println("Error reading light values");

print ("Ambient: ");
print(ambient light);
print(" Red: ");
print(red light);
print(" Green: ");
print(green light);
print(" Blue: ");
println(blue light);

15

Gesture Sensing

This example program uses
the D12 digital port for
generating an interrupt.

An interrupt signal is a way to
cause a function to be
executed when an external
event occurs. Digital port D12
IS configured as an input and
will generate an interrupt
when the input signal
transitions from high to low.

#include <Wire.h>
#include <SparkFun APDS9960.h>

#define APDS9960 INT 12 //Interupt pin

SparkFun APDS9960 apds =
volatile bool isr flag = 0;

void interruptRoutine() {
isr flag = 1;
}

void setup() {
Wire.begin(4,5);
pinMode (12, INPUT);
Serial.begin(115200);
attachInterrupt (APDS9960 INT,
interruptRoutine, FALLING);
if (!apds.init())
Serial.println("Something went wrong");
if (!apds.enableGestureSensor(true))
Serial.println("Something went wrong
during gesture sensor init!");

}

SparkFun APDS9960();

16

Gesture Sensing

The highlighted code shows
the variable isr_flag will be
used in the interrupt.

interruptRoutine() will be
executed every time an
Interrupt occurs. In the
Interrupt routine, the isr_flag
variable is set tol. This Is
used to indicate the interrupt
occurred. It is monitored in the
loop() function.

Notice the volatile word in the
variable declaration. This is
used to tell the compiler that
the variable can be set
anywhere at any time. This
keeps the compiler from trying
to optimize the code which
could affect the variable.

#include <Wire.h>
#include <SparkFun APDS9960.h>
#define APDS9960 INT 12 //Interupt pin

SparkFun APDS9960 apds =
volatile bool isr flag = 0;

void interruptRoutine() {
isr flag = 1;
}

void setup() {
Wire.begin(4,5);
pinMode (12, INPUT);
Serial.begin(115200);
attachInterrupt (APDS9960 INT,
interruptRoutine, FALLING);
if (!apds.init())
Serial.println("Something went wrong");
if (!apds.enableGestureSensor(true))
Serial.println("Something went wrong
during gesture sensor init!");

}

SparkFun APDS9960();

17

Gesture Sensing

In setup() after initializing the
|I2C and serial interface, the
Interrupt is configured. Digital
pin 12 which is named
APDS9660_INT is set up as
the trigger for the interrupt and
that the trigger occurs only
when the signal transitions
from high to low. Any of the
digital pins can be set up as
an interrupt trigger. RISING is
also valid for detecting when
signals go from low to high.

#include <Wire.h>
#include <SparkFun APDS9960.h>
#define APDS9960 INT 12 //Interupt pin

SparkFun APDS9960 apds = SparkFun APDS9960();
volatile bool isr flag = 0;

void interruptRoutine() {
isr flag = 1;
}

void setup() {

Wire.begin(4,5);

pinMode (12, INPUT);

Serial.begin(115200);

attachInterrupt (APDS9960 INT,
interruptRoutine, FALLING);

if (lapds.init())
Serial.println("Something went wrong");

(!apds.enableGestureSensor (true))
Serial.println("Something went wrong
during gesture sensor init!");

}

if

18

Gesture Sensing

In setup() after initializing the
|I2C and serial interface, the
Interrupt is configured. Digital
pin 12 which is named
APDS9660 _INT is set up as the
trigger for the interrupt and that
the trigger occurs only when the
signal transitions from high to
low. Any of the digital pins can
be set up as an interrupt trigger.
RISING is also valid for
detecting when signals go from
low to high.

apds.enableGestureSensor()
sets the sensor mode to detect
gestures. The true argument
enables the interrupt signal in
the sensor.

#include <Wire.h>
#include <SparkFun APDS9960.h>
#define APDS9960 INT 12 //Interupt pin

SparkFun APDS9960 apds =
volatile bool isr flag = 0;

void interruptRoutine() {
isr flag = 1;
}

void setup() {
Wire.begin(4,5);
pinMode (12, INPUT);
Serial.begin(115200);
attachInterrupt (APDS9960 INT,
interruptRoutine, FALLING);
if (!apds.init())
Serial.println("Something went wrong");
if (!apds.enableGestureSensor(true))
Serial.println("Something went wrong");

SparkFun APDS9960();

19

Gesture Sensing

The loop function monitors the isr_flag and when the interrupt routine sets it
to 1, the interrupt is disabled so no interrupts can occur while processing
the current one. The function handleGesture() is called to process the
sensor data. isr_flag is set to O and the interrupt is re-enabled for the next
gesture.

void loop() {

if(isr flag == 1) {
detachInterrupt (APDS9960 INT);
handleGesture();

isr flag = 0;
attachInterrupt (APDS9960 INT, interruptRoutine, FALLING);
}

}

20

Gesture Sensing

The handleGesture() function gets
the gesture detected and displays
the detected gesture.

First, it checks to make sure a
gesture result is available with
apds.isGestureAvailable().

If so, the data is extracted from
apds.readGesture(). The data is
not assigned to a variable but used
In the switch function directly.

The values DIR_UP and others are
defined in the library.

void handleGesture() {
if (apds.isGestureAvailable()) {
switch (apds.readGesture()) {

case DIR UP:
Serial.println("UP");
break;

case DIR DOWN:
Serial.println("DOWN");
break;

case DIR LEFT:
Serial.println("LEFT");
break;

case DIR RIGHT:
Serial.println("RIGHT");
break;

case DIR NEAR:
Serial.println("NEAR");
break;

case DIR FAR:
Serial.println("FAR");
break;

default:
Serial.println("NONE");

21

