Processing

Introduction to Processing

e Processing is a programming environment that makes writing
programs easier.

|t contains libraries and functions that make interacting with the
program simple.

The development software to be
used is called Processing.

Processing Is a programming
language and development
environment using Java.

Processing makes developing
software easier.

More information can be found at
processing.org. The software is
free to download and use.

The development environment is
similar to the Arduino development
environment.

= sketch_140102a | Processing 2.1 -+ 2

File Edit Sketch Tools Help
-;--_- o Java
! |

(Y- >

sketch_140102a [~]

First Program

Try the program to the right.

It's structure is the same as
the Arduino software.

The one small difference is

that Loop() is now draw().

Draw() behaves the same
as loop() and is executed
repeatedly.

void setup()

{
size(600,400);

}

void draw()

{
ellipse(300,200,80,80);

}

First Program

« Inthe setup() function, there is a
function called size().

e Size creates a window with the
size of the window specified in
pixels.

— The first number is the width.

- The second number is the height.

 The window can be thought of as a (0,0)

graph with the 0,0 coordinate In
the upper left hand corner. The
value of X increases from left to
right. The value of Y increases
from top to bottom.

void setup()

{

size(600,400);

}

void draw()

{

ellipse(300,200,80,80);

}

»599

Window

400

First Program

* In the draw() function is a
function called ellipse(). This
function draws a circle or
ellipse.

The first number is the x
position.

The second number is the y
position.

The third number is the width
of the ellipse.

The fourth number is the
height of the ellipse.

void setup()

{
size(600,400);

}

void draw()

{
ellipse(300,200,80,80);

}

Adding to the First Program

The color of the ellipse can be

changed with the function void setup()
£i11(). {

Add the function fill() before }
the ellipse() function.

size(600,400);

void draw()

The ellipse should now be nearly {

black. £111(10);
ellipse(300,200,80,80);

Change the number to any }

number in the range of 0 to 255
and run again.

The number sets the gray
intensity level of the ellipse from
black to white.

Adding to the First Program

« Change the fill() function

parameters with the numbers void setup()

. - {
shown to the right and run again. size(600,400);

« When the fill() function gets }

three numbers, it knows to set

the ellipse to the specified color. void draw()

{

— The first number is the fil}(200,50,200);
intensity of red. ellipse(300,200,80,80);
}

- The second number is the
intensity of green.

— The third number is the
intensity of blue.

Interacting with the Program

* The mouse can be used to

interact with the program. The void setup()
position of the mouse can be t
used by using two variables. } s1ze(600,400);
- mouseX

void draw()
- mouseY {

£111(200,50,200);
ellipse(mouseX,mouseY, 80,80);

}

 The variables are case sensitive.
Replace the X and Y coordinates
In ellipse with mouseX and

mouseY.

* Run the program and see what
happens.

Interacting with the Program

Now at the beginning of the

draw() function, add the ‘{’°id setup()
function background (). size(600,400);
Run the program again. t

This time there is only one void draw()
ellipse that is moved around. {

background(50);
When background() is used, it £i11(200,50,200);

clears the screen of anything ellipse(mouseX,mouseY,80,80);
displayed previously for a new }

start.

Keyboard Interaction

This code will use the keyboard

to change the color of the ‘{’Oid SEETR
ellipse. size(600,400);
Processing has a variable that }
Indicates what key has been _
pressed. volid draw()

{
The comparison is made against background(50);
a character and has to be in if(key == 'a’)
single quotes. £111(200,50,200);

else if(key == 'b")
Try running the program. £i11(0,255,0);
_ ellipse(mouseX,mouseY,80,80);

Add more key selections and y

other colors.

Event Based Programming

_ i void setup()
Processing is an event based {

programming environment. This size(600,400);
means certain types of functions |}
execute when specific events

void draw()
OCCuUr.

{
background(50);

This example shows the function ellipse (mouseX mousey,80,80);

keyPressed() which is y
executed when a key is pressed _
on the keyboard. It is not called | void keyPressed() A

switch(keyCode) {
from any other part of the case UP : £ill(0,255,0);

program. break;
i case DOWN : £ill(255,0,0);
This program uses the arrow el
keys. This requires the use of case LEFT : £il1(0,0,255);
another processing variable break;
called keyCode. case RIGHT : £ill(255,0,255);
break;

Run this program. }

Event Based Programming

Another event function is
keyReleased(). This s

executed when the key on the
keyboard is let go.

This program turns the ellipse
black when a key is not pressed.

Run this program.

Save this program. It will be
used again.

void setup()

{
size(600,400);

}

void draw()

{
background(50);

ellipse(mouseX,mouseY, 80,80);

}

void keyPressed() {
switch(keyCode) {

case UP : £ill(0,255,0);
break;

case DOWN : £ill(255,0,0);
break;

case LEFT : £i1l1(0,0,255);
break;

case RIGHT : f£ill(255,0,255);

break;

}
}

void keyReleased() {
£i11(0,0,0);
}

Other 2D Primitives

 Rectangle

rect(x,y,width,height);

rect(x,y,width,height,curve);

u

rect(x,y,width,height,topleft,topright,bottomright,bottomleft); G

The X,y coordinates are the top left corner of the rectangle. The width
specifies how large the rectangle is to the right. The height specifies how
large the rectangle is in the downward direction.

Other 2D Primitives

 Rectangle

rect(x,y,width,height);

rect(x,y,width,height,curve);

u

rect(x,y,width,height,topleft,topright,bottomright,bottomleft); G

The curve specifies how many pixels the corners of the rectangle are
rounded. The last form lets you specify how much each corner is curved.

Other 2D Primitives

« Triangle

triangle(x1,y1,x2,y2,x3,y3);

Each coordinate specifies a corner of the triangle. There is no required
order for the coordinates.

Write a program to generate a triangle and set the first two coordinates
to a fixed location.

Set the third coordinates to mouseX and mouseY.
Run the program.

Insert background(0) in the beginning of draw() and run again.

Other 2D Primitives

* Quadrilateral
- quad(x1,y2,x2,y2,x3,y3,x4,y4);

- The coordinates specify the four corners of the quadrilateral.

Displaying Text

The function text ()

IS used to display text
In the window.

The program to the
right displays the
mouse coordinates at
the top left corner of
the window.

The values 20,20 are
the x and y
coordinates. The
coordinates is the top
left corner of the text.

void setup()
{

size(600,400);
}

void draw()

{
background(50);
text (“Mouse: “ + mouseX + “ *“ + mouseY,20,20);
£1i11(200,50,200);
ellipse(mouseX,mouseY,80,80);

Displaying Text

The first argument in
the text() function is
the text to be
displayed.

The word Mouse: is
displayed.

The values of the
mouse position is
added to the end of
Mouse.:.

Try it out.

void setup()
{

size(600,400);
}

void draw()

{
background(50);
text (“Mouse: “ + mouseX + “ *“ + mouseY,20,20);
£1i11(200,50,200);
ellipse(mouseX,mouseY,80,80);

Displaying Text

Need the text to be

larger? Use the void setup()

function textSize(). ¢ size(600,400);

Try out different sizes. '

void draw()

{
background(50);
textSize(32);
text (“Mouse: “ + mouseX + “ “ + mouseY,20,20);
£1i11(200,50,200);
ellipse(mouseX,mouseY,80,80);

Displaying Text

» The text can be set to

different colors or void setup()

shades of gray using ¢

’ _ size(600,400);
the £il1() function. |y

 To setashade of gray, | void draw()

use one value in the {
function with a range i’zctg?ozf(lg;?o) ?
xXxtSiz ;
of 0 to 255. £111(180); // set to gray
text (“Mouse: “ + mouseX + “ *“ + mouseY,20,20);

£1i11(200,50,200);
ellipse(mouseX,mouseY,80,80);

Displaying Text

« To setthe textto a

color, insert three void setup()
numbers in the ¢ size(600,400);
fill() function. The |}

numbers represent the

primary colors red,
green, blue.

void draw()
{

background(50);

textSize(32);
Values range from 0 to £i11(30,100,250);

255. text (“Mouse: “ + mouseX + “ *“ + mouseY,20,20);
£i11(200,50,200);
ellipse(mouseX,mouseY,80,80);

Animating

Next is to make some animation.

int a;
This next example will show a void setup()
rectangle grow in size. {

size(600,400);
It starts on the left and grows to a = 1;
the right across the screen then }

starts over. void draw()

_ {
The variable a sets the length of background(0) ;

the rectangle. It is incremented £i11(0,150,200);
each time the draw () function rect(20,200,a,50);
repeats. a=a+ 1;

if(a == 500) a = 1;
Try the program out and then }

change it to start at the bottom of | }

the screen and grow toward the
top. It will require a little math.

Animating

« Notice that the variable a is YR
checked with the if () statement \l,gida;etup()

to determine if it reached 500. If it | ¢

iIncrement to 500, a is set back to size(600,400);
1. 2 = L7
}

void draw()

{
background(0);
£i11(0,150,200);
rect(20,200,a,50);
a=a+ 1;
if(a == 500) a = 1;
}

More Animation

Now, let's try some movement.

int a;
Set the size of the rectangle to void setup()
50,50 pixels. Replace the x {

size(600,400);

coordinate with the variable a. Nl

Run the program. The rectangle |}

should move left to right and then | _ . 4 draw()

start over on the left side. {

background(0);
Add to the program to have the £i11(0,150,200);
rectangle move back to the rect(a,200,50,50);
original position. It's just another a=a+ 1;
for loop with the value going from if(a == 500) a = 1;

500 to 1. ¥

More Animation

The color can also be animated.

int a;
Replaec one of the values In fill |
with the variable. ‘{’Old setup ()
The value of a has to be reset Size(600,400);
after it reaches 255. } a = 0;

void draw()

{
background(0) ;
fill(a,150,200);
rect(200,200,50,50);
at+;
if(a >255) a = 0;

End

« At this point, you have a basic idea of creating shapes, detecting keys
pressed and simple animations. This will be used with the rover for
the remote operations.

Animating Sensor Data

 In this next section, sensor data will
be used to control the position of a
rectangle.

« The first sensor to use will be the
ultrasonic range sensor.

e The animation will show the 2 o ‘*
rectangle move away and toward the |
left edge of the screen based on the
data from the sensor.

The Set Up

* Insert the ultrasonic ranger as shown. It

should be mounted close to the center of T, AP 205 o B
| . @ i50hd e iAgd @
the robot. The pins are inserted at the LSy e Wy g B+ ON
end of the rows. T alldul L RS {:E K:
« Connect jumpers from the sensor to the
processor % G aaan ey ©
- GND to Analog GND
— ECHOtoplnD3 ooooao 10 OO0OO0OO0OO0O OO0OO0O0OO
- TRIG to pin D5 i Ep eabdor el a2
Do ooo 1 0000000000000
gonQEaa i]EICIDEIDDL‘ICIDDCIDD
- VCC to Analog 5V

DDDDDD]!! ODDoDOoODDOoODDODODODODOO
ooooooanf o o o)
OooO0oO0oO0oO0OOoDO0OO0ODODOO0ODOOOODODOOOOO
O000O00D00OO0D0DO0O0DO0O0OO0OD0DO0DO0ODDOODODO
0
(m)

DDDDDiiiiDDDDUDDUDDUDD
ooooao

* Look on the processor board for the
word ANALOG. The power connections
are done there to isolate the sensor from
the motor power to reduce electrical
noise.

he Code

Next is to reuse the code from
the rover lesson that was on
page 109.

If it wasn't saved, enter the
code to the right.

void setup()

{

}

Serial.begin(9600);
pinMode (3, INPUT);
pinMode (5, OUTPUT);

void loop()

{

digitalwrite(5,LOW);
delayMicroseconds(2);
digitalwWrite(5,HIGH);
delayMicroseconds(10);
digitalwrite(5,LO0W);

long distance = pulseIn(3,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

Animating

« Create a new program in
Processing.

import processing.serial.*;

« |Import the library Serial.
The text to the right will
appear. This will allow
processing to talk to the
rover processor board.

Animating

Next is to create an
Instance of the object
Serial. It will be called
port.

This Is part of object
oriented programming.
The object Serial has
several functions.
Creating an instance of
the Serial object lets you
have multiple unique
copies. This would be
useful if you needed to
communicate through
more than one serial
Interface.

import processing.serial.*;

Serial port;

Animating

* Withthe Se”al _ObJ_eCt import processing.serial.*;
port created, it is time to
configure it. Serial port;

e portis assigned a Serial | void setup() {
Interface. Change x to port = new Serial(this,”COMx”,9600);

the COM port number
used in the Arduino
software. This is similar
to Serial.setup().

Animating

« We want to create a
window for our animation
and to have it take up the| serial port;
whole screen.

import processing.serial.*;

void setup() {
 Processing has two port = new Serial(this,”COMx"”,9600);
variables automatically size(displayWidth,displayHeight);
set to the size of the }

computer screen. They
are called displayWidth
and displayHeight.

 These variables allow
you to know the display
Size on the computer the
program is running. This
Is useful to know since
different computers have
different display sizes.

Animating

* Now that things are
Initialized, next is to
create the animation.

 In the draw() function, the
port is checked to see if
any data has been
received from the rover
processor board. The
function port.available()
checks and returns the
number of bytes
received.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background (50) ;
if (port.available() > 0) {

Animating

If data is available, the
If() statement is true.

The next statement reads
the data into a String
variable.

A String is a variable for
containing text.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);

size(displayWidth,displayHeight);
}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();

Animating

 The next thing that is
done is the String
variable a is checked to
make sure there Is
something in the
variable.

« |f there is something in
the variable, then the
results are displayed in
the window.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
}

Animating

e Enter the program and
run it. Turn on the rover
processor board.

e Text should appear with
the distance
measurement from the
ultrasonic range sensor.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
}

Animating

The next line is used to
remove the carriage
return and line feed
characters that the rover
processor includes when
It sends the numbers
over the USB port.

This needs to be done
so that the next function
can operate properly.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
a = a.replaceAll(“(\\r|\\n)”","");

Animating

* Next, the String variable
IS converted to an integer
value so that the number
can be used.

import processing.serial.*;

Serial port;

void setup() {

}

port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

void draw() {

background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
a = a.replaceAll (“(\\r|\\n)”,"");
int b = Integer.parselInt(a);

Animating

Now it is time to change
the code to animate the
distance using a
rectangle.

First, the string variable
needs to be converted to
an integer.

Then the rectangle can
be drawn with the rect()
function.

Try running this program
and see the results.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
a = a.replaceAll (“(\\r|\\n)”,"");
b = Integer.parselnt(a);
rect(b,100,10,300);

Animating

If you want to make the
rectange move further to
the right, this would
require scaling.

Go to the rect() function
and double b as shown.

Rerun the program.

Change the 2 to any
other number and see
what happens.

import processing.serial.*;
Serial port;

void setup() {
port = new Serial(this,”COMx"”,9600);
size(displayWidth,displayHeight);

}

void draw() {
background(50);
if(port.available() > 0) {
String a = port.readString();
if(a != null) {
text(a,50,50);
a = a.replaceAll (“(\\r|\\n)”,"");
b = Integer.parselnt(a);
rect(b*2,100,10,300);

}

Modifications

* Instead of moving the rectange, modify the program to change the
size of the rectangle based on the sensor data.

« Use the fill() function to change the color based on the sensor data.
You may need to scale it so none of the colors exceeds 255.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

